Download \(CO_2\) emissions per capita from [Our World in Data] (https://ourworldindata.org/co2/country/united-states?country=~USA#per-capita-how-much-co2-does-the-average-person-emit) into the directory for this post.
Assign the location of the file to file_csv
. The data should be in the same directory as this file. Read the data into R and assign it to emissions
emissions
emissions
# A tibble: 23,307 x 4
Entity Code Year `Annual CO2 emissions (per capita)`
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# ... with 23,297 more rows
emissions
data THEN use clean_names
from the janitor package to make the names easier to work with assign the output to tidy_emissions
show the first 10 rows of tidy_emissions
tidy_emissions <- emissions %>%
clean_names()
tidy_emissions
# A tibble: 23,307 x 4
entity code year annual_co2_emissions_per_capita
<chr> <chr> <dbl> <dbl>
1 Afghanistan AFG 1949 0.0019
2 Afghanistan AFG 1950 0.0109
3 Afghanistan AFG 1951 0.0117
4 Afghanistan AFG 1952 0.0115
5 Afghanistan AFG 1953 0.0132
6 Afghanistan AFG 1954 0.013
7 Afghanistan AFG 1955 0.0186
8 Afghanistan AFG 1956 0.0218
9 Afghanistan AFG 1957 0.0343
10 Afghanistan AFG 1958 0.038
# ... with 23,297 more rows
tidy_emissions
THEN use filter
to extract rows with year == 2004
THEN use skim
to calculate the descriptive statisticsName | Piped data |
Number of rows | 229 |
Number of columns | 4 |
_______________________ | |
Column type frequency: | |
character | 2 |
numeric | 2 |
________________________ | |
Group variables | None |
Variable type: character
skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
---|---|---|---|---|---|---|---|
entity | 0 | 1.00 | 4 | 32 | 0 | 229 | 0 |
code | 12 | 0.95 | 3 | 8 | 0 | 217 | 0 |
Variable type: numeric
skim_variable | n_missing | complete_rate | mean | sd | p0 | p25 | p50 | p75 | p100 | hist |
---|---|---|---|---|---|---|---|---|---|---|
year | 0 | 1 | 2004.00 | 0.00 | 2004.00 | 2004.00 | 2004.00 | 2004.00 | 2004.0 | ▁▁▇▁▁ |
annual_co2_emissions_per_capita | 0 | 1 | 5.43 | 6.99 | 0.02 | 0.83 | 3.23 | 8.45 | 56.7 | ▇▁▁▁▁ |
tidy_emissions
then extract rows with year == 2004
and are missing code# A tibble: 12 x 4
entity code year annual_co2_emissions_per_ca~
<chr> <chr> <dbl> <dbl>
1 Africa <NA> 2004 1.16
2 Asia <NA> 2004 2.97
3 Asia (excl. China & India) <NA> 2004 3.61
4 EU-27 <NA> 2004 8.68
5 EU-28 <NA> 2004 8.79
6 Europe <NA> 2004 8.81
7 Europe (excl. EU-27) <NA> 2004 8.96
8 Europe (excl. EU-28) <NA> 2004 8.80
9 North America <NA> 2004 14.5
10 North America (excl. USA) <NA> 2004 5.53
11 Oceania <NA> 2004 13.2
12 South America <NA> 2004 2.36
filter
to extract rows with year == 2004 and without missing codes THEN use select
to drop the year
variable THEN use rename
to change the vairable entity
to country
assign the output to emissions_2004
annual_co2_emissions_per_capita
?start with emissions_2004
THEN use slice_max
to extract the 15 rows with the annual_co2_emissions_per_capita
assign the output to max_15_emitters
annual_co2_emissions_per_capita
start with emissions_2004
THEN use slice_min
to extract the 15 rows with the lowest values assign the output to min_15_emitters
bind_rows
to bind together the max_15_emitters
and min_15_emitters
assign the output to max_min_15
max_min_15 <- bind_rows(max_15_emitters, min_15_emitters)
max_min_15_csv <- read_csv("max_min_15.csv") # comma-separated values
max_min_15_tsv <- read_tsv("max_min_15.tsv") # tab separated
max_min_15_psv <- read_delim("max_min_15.psv", delim = "|") # pipe-separated
setdiff
to check for any differences among max_min_15_csv
, max_min_15_tsv
and max_min_15_psv
setdiff(max_min_15_tsv, max_min_15_psv)
# A tibble: 0 x 3
# ... with 3 variables: country <chr>, code <chr>,
# annual_co2_emissions_per_capita <dbl>
Are there any differences? no there are no differences.
country
in max_min_15
for plotting and assign to max_min_15_plot_data start with emissions_2019
THEN use mutate
to reorder country
according to annual_co2_emissions_per_capita
max_min_15_plot_data
ggplot(data = max_min_15_plot_data,
mapping = aes(x = annual_co2_emissions_per_capita, y = country))
geom_col()
geom_col: width = NULL, na.rm = FALSE
stat_identity: na.rm = FALSE
position_stack
labs(title = "The top 15 and bottom 15 per capita CO2 emissions",
subtitle = "for 2004",
x = NULL,
y = NULL)
$x
NULL
$y
NULL
$title
[1] "The top 15 and bottom 15 per capita CO2 emissions"
$subtitle
[1] "for 2004"
attr(,"class")
[1] "labels"
preview: preview.png